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Abstract--Theoretical expressions for bubble diameter in both small and large particle fluidized beds are 
derived by the application of two phase theory and gas flow continuity. Comparison with experimental data 
suggests that the numerical and analytical solution of these expressions, combined with empirical bubble 
frequency relations, can provide an accurate prediction of bubble size and its parametric trends. 

Several commonly employed empirical correlations of bubble diameter are shown to be derivable from a 
common theory, with differences among the correlations ascribed to variations in ttow regime and bubble 
frequency. 

INTRODUCTION 
In gas fluidized beds, in which aggregative fluidization is generally encountered, the charac- 
teristics of the gas voids, which rise and grow within the emulsion, exert a profound influence 
on the fluid dynamics and chemical kinetics of the bed. Extensive investigations by Davidson et 

al. (Davidson & Harrison 1963), have shown that the dynamics of a single, isolated gas void in a 
fluidized medium are analogous to those of a gas bubble in a homogeneous liquid and that 
potential flow theory, as first developed by Davies & Taylor (1950), can be used to establish the 
velocity fields in the surrounding emulsion and in the rising bubble. However, the more 
complex characteristics of bubble swarms have not been thoroughly explored and the diameter, 
rise velocity and bubble concentration have generally been determined from empirical relations 
for similar beds, leaving major discrepancies unresolved. 

Two-phase theory--particularly with Davidson's bubble model--forms the basis for much 
of the analysis of fluidized bed behavior (Davidson & Harrison 1963, Toomey & Johnstone 
1952). In this representation, the emulsion, consisting of both solids and gas, is viewed as a 
single, composite phase while the gas voids are viewed as the second phase. An examination of 
the relevant physical relations suggests that the bubble diameter is the single most important 
bubble parameter and, indeed, many empirical correlations for bubble diameter are available in 
the literature and several of these are summarized in table 1. While all these relations provide 
adequate agreement with specific sets of measured values, they display striking differences in 
both general form and sensitivity to key variables. These discrepancies and the absence of a 
widely applicable predictive relation motivated much of a present effort to obtain a bubble 
diameter prediction based rigorously on two-phase theory and gas flow continuity. 

In succeeding sections, theoretical expressions for the diameter of both slow and fast 
bubbles will be derived. Numerical and analytical solutions of the resulting relations will then 
be presented and compared with both data and several reported correlations. 

THEORETICAL DEVELOPMENT 

In the analysis of fluid dynamic phenomena in fluidized beds, it is often convenient to 
distinguish between "slow" bubbles, whose rise velocity is less than the interstitial gas velocity, 
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Table 1. Bubble size correlation (Darton et al. 1977) (dimensional constants given in SI units: 
h(m), U(m/sec), etc.) 

Author Correlation 

Rowe 
Werther 
Yacono 
Yasui and Johanson 

Geldart 

Darton et al. 

19/= ( U- U,~t)I/~(h + ho)3/41g t/4 
/9, = 0.0085311 + 27.2(U - U=t)]z/3(l + 6.84h] TM 
D/= 0.38h°'75(U - U,./) °'4~ 
Y= 0.33p, dp[(U/Urn~) - 1] °'63h 
D: 1.43/(U- U,.I)D2~ °.4 

=~-67$1 4No ] +2 .05(8-  Ur, r)°'94h 

De = 054(U - Um/)°'4(h + 4X/ Ao)°'S/g °'2 

and "fast" bubbles, which rise at a velocity greater than the interstitial gas velocity (Davidson 
& Harrison 1963). Due to their relatively high minimum fluidization velocities, large-particle 
beds can be expected to operate both in the slow bubble and fast bubble regime, while the more 
common, fine-powder fluidized beds generally operate only in the fast bubble regime. In the 
analyses presented herein, distinct expressions will be derived for each of the two bubbling 
regimes, though it must be noted that "slow" and "fast" are relative terms and that a bubble of 
a given diameter could be slow in a bed of 1000-/zm particles and fast in a bed of 50 ~m. 

Gas flow continuity 
Gas transport through a fluidized bed operating in the slow bubble regime involves three 

distinct components (as depicted in figure la): interstitial gas flow in the emulsion phase, gas 
rising with the bubble in the recirculation and wake zones, and gas flow through the bubble 
void. Continuity considerations dictate that the flow rate of fluidizing gas equal the sum of these 
components. Combining the three components into a single relation, with the implicit assump- 
tion that the flow of gas around and through a single isolated bubble can be used to characterize 
the behavior of many bubbles rising simultaneously in an aggregatively fluidized bed--the 
superficial gas velocity is found to equal (Hughes 1978) 

U = [1 - 8(1 +/3~ + Ol)]~rafU e + 8[(1 +/3~mf + Otemf)Ub + 3(1 --/3,)Umf] [1] 

where U is the superficial gas velocity; 8 the fraction of bed volume occupied by bubbles;/3x 
the fraction of bubble volume occupied by the external recirculation zone; a the wake fraction 
(of bubble volume); E,.f the value of bed voidage at minimum fluidization; Ue the velocity of the 
interstitial gas, Ub the bubble rise velocity; /3. the internal recirculation fraction (of bubble 
volume); and Umf the superficial velocity at the incipience of fluidization. However, in the slow 
regime the wake fraction is suspected to be negligible (Geldart & Granfield 1972), and for low 
bubble rise velocities, the recirculation zones become negligible as well. Thus, for these 
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Figure I. Bubble flow field: (a) slow bubble, (b) fast bubble. 
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conditions, [1] can be substantially simplified to the form originally suggested in Kunii & 
Levenspiel (1969) 

U = (1 - 8)UmI+ 8(Ub +3Umf). [2] 

It is significant to note that a recent analysis of large particle data suggests that [2], in fact, is 
valid throughout the slow bubble regime and that the sum of the recirculation and throughflow 
terms is thus approximately constant and equal to 3 Urns8 (Hughes 1978, Bar-Cohen et al. 1978). 

Bubble gas flow in the fast bubble regime (represented schematically in figure lb) involves 
gas recirculation in both the cloud and the wake as well as the volume of gas rising in the 
bubble. However, in contrast to slow bubble flow, it does not include flow of gas through the 
bubble void. Assuming once again that the isolated bubble flow field can be used to characterize 
the behavior of bubble swarms and combining bubble flow with the emulsion component, gas 
flow continuity for this regime can be expressed as 

u = [1 - 8(1 +/3 + a)]e,.~Ue + 811 + (a + [3)~.1]Ub [3] 

where/3 is the fraction of bubble volume occupied by the cloud. In contrast to the slow bubble 
flow field, the fast bubble recirculation zone diminishes in size with increasing bubble rise 
velocity (Davidson & Harrison 1963), and consequently, for very fast bubbles, Ubr > 5 Um/e~f, 
when gas flow in the wake and cloud becomes negligible, the superficial gas velocity can be 
closely approximated by (Kunii & Levenspiel 1969) 

U = Umi(1 - 8) + UbS. [4] 

The continuity equations for both fast and slow bubbles, [1]-[4], necessarily involve the 
absolute bubble rise velocity, ub. Studies of isolated bubbles have established that the rise 
velocity of a single bubble in an otherwise undisturbed fluidized medium is given by (Davidson 
& Harrison 1963), 

Ubr = 0.711(gdv) ~/2 [5] 

where Ubr is the rise velocity of an isolated bubble, g the gravitational acceleration and do is the 
volumetric mean bubble diameter. The rise velocity of a bubble in a freely bubbling bed is 
subject to some uncertainty. The most commonly assumed relationship for the bubble rise velocity 
is (Davidson & Harrison 1963), 

Ub = ub, + U -  Umf. [6] 

Detailed measurements of Ub in bubble swarms by Godard & Richardson (1969), Werther 
(1975), Werther (1977), Botterill & Bloore (1963), Whitehead & Young (1967), appear to suggest 
that bubble velocities may differ considerably from values given by [6] but, in the absence of a 
more precise relation, this simple and commonly employed formulation will be used throughout 
the present discussion. 

Following substitution of [6] into [2], the slow bubble continuity expression can be modified 
to yield a relation for bubble fraction, as 

8sb = ( U -  Umf)l(O.711x/(gdo) + U+ Umt) [7] 

with 8sb equal to the slow bubble fraction. Gas continuity for very fast bubbles, yields 

8to = ( U -  Umf)/(O.711x/(gdo) + U -  2Uml) [8] 

where 8fb is the fast bubble fraction. 
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Examination of [7] and [8] reveals that, even at specified values of U and Umf, gas flow 
continuity can not provide an explicit value for bubble diameter but, rather, yields a relation- 
ship between the bubble fraction, 8, and bubble diameter, do. A second relation between bubble 
fraction and diameter is thus needed to theoretically determine bubble diameter at fixed values 
of superficial and minimum fluidization velcoities and it can be obtained by considering 
volumetric bubble flow at a given height within a fluidized bed. 

Volumetric bubble flow 
The volumetric bubble flow crossing a horizontal plane in a fluidized bed can be expressed 

as the product of bubble volume and the frequency, ft, with which bubbles cross the reference 
plane or, alternatively, the product of bubble rise velocity and the area occupied by the bubbles. 
Thus, 

Urdo3/6)fl = uo6A [9] 

where f~ is the frequency with which bubbles cross a given level in the bed and A is the 
crossectional area of the bed. For a random bubble distribution, a simpler measure of bubble 
frequency, namely the point frequency, defined as the rate at which bubbles strike a single 
immersed probe, can replace ft in [9]. These two measures of bubble frequency are related 
through the ratio of bubble cross-sectional area to total bed area, i.e. 

ft/fp = A/(~rdo2/4) [10l 

with fp equal to the point frequency. 
Substituting the respective slow and fast bubble expressions for bubble fraction, obtained 

via continuity considerations, into [9] it is now possible to derive a relation for bubble diameter. 
Unfortunately, however, a theoretical bubble frequency relation is not presently available and 
empirical values have been reported in only a limited number of experimental studies. The few 
empirical frequency correlations appearing in the literature will, thus, be featured prominently in 
later sections. 

Bubble diameter 
In the slow bubble regime, the fraction of the bed occupied by bubbles is given by [7]. 

Cimbining [7] and [9], yields an algebraicly complex relation for slow bubble diameter, as 

dos = [6A(U - U,./)/rrf~(1 + 2 U.,/(0.71 lv'(gdv) + U - U m [ ) ) ]  113 [111 

where dvs is the diameter of a slow bubble. Similarly, the desired expression for bubble 
diameter in the fast bubble regime can be obtained by solving simultaneously [3] and [9], which 
for very fast bubbles yields (via [8]) 

d~ i = [6A(U-  Umt)/rrf~(1- U.,t/(0.711x/(gdo)+ U -  U,.t))] '/3 [12] 

where do t is the fast bubble diameter. When some measure of bubble frequency is available. 
[11] and [12] can be solved numerically by successive substitution of trial values of dr, or, with 
the aid of judicious approximation, can be cast in a form amenable to analytic evaluation. 

It is significant to note that, while several bubble diameter expressions are available in the 
literature, and a recent one due to Darton et al. (1977) achieves significant accuracy for small 
particle beds, none of these formulations attempts to satisfy gas flow continuity. In contrast, 
both [11] and [12] fully satisfy gas flow continuity as structured by the two-phase equations. 
The accuracy of the bubble diameters obtained by solving these equations will be examined in 
the next two sections. 
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NUMERICAL PREDICTION 

Calculation procedure 
To streamline the numerical solution of [11] and [12], it is desirable to establish a priori the 

range of possible bubble diameters and to adopt a rational search procedure for finding the 
value of d~ which correctly solves the algebraic equations. 

Bubble diameter range. The relations used to derive [11] and [12] are based on the potential 
flow model for an isolated bubble and the two phase theory of fluidization. Although two-phase 
theory could allow the existence of vanishingly small bubbles, the presence of particle sized, 
inter-particle voids even in the minimally fiuidized emulsions, establishes the particle diameter 
as a logical minimum value for bubble diameter. 

In a fluidized medium the motion of an isolated bubble results in the creation of a 
recirculation zone (for slow bubbles) or a cloud zone (for fast bubbles) around each individual 
bubble. In the absence of a more rigorous solution, the isolated bubble, two. phase equations 
can be considered to apply as long as the spherical volume of the bubble, its wake and its cloud 
(or recirculation zone) does not overlap the adjacent bubble/wake/cloud volume. This approach 
was adopted in the present numerical calculations. 

Since the present formulation is not meant to apply to slugging behavior, and as such 
behavior generally commences when the bubble diameter exceeds 1/3-1/2 the bed diameter 
(Stewart 1965), d~ = D/2 can serve an an upper limit on the range of bubble diameters to be 
explored in searching for the solution of [11] or [12]. 

Search procedure. With the d~ range defined, one of several widely used root-searching 
algorithms may be employed. The method of successive substitution is especially well-suited to 
the solution of [11] and [12] and was used in the present calculation (Hughes 1978). Once it is 
determined that a root exists within a sepcified range of d~ values, this method provides rapid 
convergence to the root when a monotonic dependence of the variable exists. Such a monotonic 
dependence of dv on the superficial velocity is generally encountered in each of the possible dv 
segments: the slow bubble range from dp to bubble/wake/recirculation overlap and the fast 
bubble range from bubble/wake/cloud overlap to the slugging limit. 

Comparison with data 
Due to the dearth of slow bubble data in the literature and the inconsistency of bubble size 

measurements, complete validation of the two phase/frequency bubble growth model developed 
herein is most difficult. It is, nevertheless, possible to examine the accuracy of this bubble size 
prediction method by comparison with published experimental results. 

Slow bubble regime. In the large-particle (dp = 1760/zm) fluidized bed investigation by 
Cranfield & Geldart (1974) both bubble frequency and bubble diameter were measured by 
independent means and the bubble point frequency correlated according to 

fp -- 16.7h -°'72 -+ 20 per cent [13] 

where h is the height above the distributor. The relative predictive capabilities of the present 
bubble growth model and Darton et al.'s (1977) fast-bubble formulation can thus be examined 
by comparison with Cranfield & Geldart's (1974) experimental d~ values. Such a comparison is 
shown in figure 2, where the values obtained by numerical solution of [11] are seen to be in 
excellent agreement with the data. Alternately, use of the method proposed by Darton et al. 
(1977) appears to result in a widening disparity as the measured bubble diameter increases, 
suggesting that it may be inadvisable to use fast-bubble formulations to predict bubble size in 
large particle beds. 

In an earlier large particle (dp ~-1540/~m) fluidization study, performed by McGrath & 
Streatfield (1971), the diameter and frequency of the bubbles erupting from a vigorously bubbling 
bed were measured, although with less accuracy than in Cranfield & Geldart (1974). Examina- 
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Figure 2. Bubble diameter predictions, data of Cranfield & Geldart (1974). 

tion of figure 3 reveals that the solution of [11] using the measured McGrath and Streatfield 
frequency, yields moderately good agreement between predicted and measured bubble 
diameters, the latter taken to equal 2/3 of the observed eruption diameters. The modest 
disparity noted could perhaps be accounted for by experimental inaccuracies. The other two 
predictions shown in the figure, obtained by solving [11] with the Cranfield & Geldart (1974) 
frequency correlation and the Darton et al. (1977) model, respectively, are seen to offer 
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significantly poorer agreement with the data, especially for small bubble diameters. These 
results can be traced to differences in bubble frequency between the two large particle studies 
and suggest again that fast-bubble correlation may not be applicable to beds operating in the 
slow bubble regime. 

Fast bubble regime. In a study of small particle (dp - 103/~m) fluidization, Werther (1976) 
measured both volumetric mean bubble diameters and bubble frequency as functions of 
fluidizing velocity and bed height. The measured bubble diameters place this study well within 
the fast bubble regime and Werther's empirical correlation of bubble frequency, typically 
offering -- 20 per cent agreement with data, 

[t/A = (0.57 + 0.39h) -3 [14] 

must, therefore, be viewed as primarily appropriate to this regime of bed behavior. The 
excellent agreement between predicted bubble diameter, obtained by solution of [12] with the 
frequency of [14], and the measured values is shown in figure 4. Significantly, the Darton et al. 
(1977) correlation, developed in part on the basis of Werther's (1976) data, is in this regime seen 
to offer equally good agreement. Values predicted on the basis of the Cranfield & Geldart (1974) 
frequency, [13] are, on the other hand, seen to diverge widely from the measured fast bubble 
diameters. 

Rowe & Everett (1972), in their study of small particle fluidization (dp varying from 135 to 
323 ~m), used X-rays of portions of the bed to determine both the number of bubbles and the 
mean bubble diameter in the control volume. Two examples of a comparison between their 
measured values and various bubble diameter prediction techniques are shown in figures 5 and 
6. As can be seen in these figures, agreement between solutions of [12] (using reported bubble 
frequency) and the data is good but not as close as the predictions of the Darton et al. (1977) 
model. Bubble diameter values derived via [12] and [13] (the Cranfield and Geldart frequency) 
offer acceptable accuracy only at the low end of the bubble size spectrum, closest to the slow 
bubble regime. 
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D E V E L O P M E N T  OF S E M I - E M P I R I C A L  R E L A T I O N S  

Examination of available empirical and semi-empirical correlations for bubble diameter, do, 
in fluidized beds (Rowe 1976, Werther 1976, Yasui & Johanson 1958, Kato & Wen 1969, Geldart 
1972, Cranfield & Geldart 1974, Darton et al. 1977, Park et al. 1%9) reveals striking differences 
in both the form and specific dependence of do on key variables, as can be seen in table 1 
presented earlier in the discussion. Yet, much of the data used to obtain three of the more 
prominent correlations--Cranfield & Geldart's (1974) for large particles and both Werther's 
(1976) and Darton et al. (1977) for small particles-- has been shown above to agree with two 
phase theory. It would thus appear possible to use the two phase/frequency approach to derive 
approximate expressions for bubble diameter that are compatible with the present understand- 



SEMI-EMPIRICAL PREDICTION OF BUBBLE DIAMETER IN GAS FLUIDIZED BEDS 109 

ing of fluidization phenomena and offer a rational basis for the correlation of future experimen- 
tal results. In keeping with the slow/fast bubble classification of convenience employed in 
previous sections, the derivation and exploration of such expressions will be done separately 
for large and small particle systems, respectively. 

Large particle systems 
In the most comprehensive large particle study to date (Crardield & Geldart 1974) the 

frequency with which bubbles struck a point probe and the bubble diameter were measured in- 
dependently of each other. The diameter data, shown in figure 2 to be in excellent agreement 
with two-phase theory, were correlated by the investigators in the form 

do = 0.0326(U - Urab)l'llh 0"81 +- 10 per cent [15] 

where U,.b is the superficial velocity at bubbling incipience. 
Introducing [10] and [11] and substituting the empirical point frequency relation given by 

Cranfield & Geldart (1974) ([13]), the theoretical slow bubble do expression can be modified to 
yield 

dvs = 0.0898(1 + 2Umi/ub)-I(U - U,.t)h °'72 . [16] 

Alternatively, it is possible to recast [16] in the form 

do = C I ( U -  Uml)h 0"72 [17] 

where C1 is the average value of (0.0898)(1 + 2Um/ub) -~ for the slow bubble regime. Depending 
on the specified parametric range encountered in a given apparatus and/or set of experiments, 
the value of Ct can be expected to take on somewhat different values. However, a reasonable 
estimate for the average (slow bubble) value of C1 can be obtained by setting Ub,. equal to 
one-half the slow/fast transition velocity, i.e. Ubr = Umf/2Emf, and U[U,,,f equal to 1.5 to yield 
Ca =0.04. With this value of C~, [17] is seen to be quite similar to the empirical bubble 
diameter correlation of Cranfield & Geldart (1974), with U,,,f replacing the minimum bubbling 
velocity Umb. The values of do predicted by [17] with Ca = 0.04 and the Cranfield and Geldart 
empirical correlation are both compared with Cranfield & Geldart (1974) data in figure 7. As 
might be expected from the use of an average Ca value, bubble diameters predicted by the 
analytical, two-phase relation ([17]) scatter on both sides of the data points, but most 
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importantly offer comparable overall agreement with data to that obtained by use of the 
empirical correlation ([15]). 

Small particle systems 
In the small particle ttuidization study by Werther (1976) bubble size, velocity and point 

frequency were measured and used to determine the level frequency and dr. The values for 
level frequency were found to vary inversely as the height to the third power (as shown by [14]) 
and the bubble diameter correlated to generally within _I0 per cent, by 

do = 0.85311 + 0.272(U - U,.I)]I/3[I + 0.0684h] 1"2~ . [18] 

Returning to [12] the fast-bubble analytical expression for dr, it is noticed that for values of Ub 
much greater than Umi (as is generally the case in this regime) the denominator approaches ~rf~, 
i.e. 1-U,,I/ub ~ 1. Consequently, with only a modest loss of accuracy, [12] can be greatly 
simplified and following substitution for ft from [14] shown to yield 

dr[ -- 0.71(U - U,,f)~/3(1 + 0.0684h). [19] 

Examination of [19] reveals that it is of the same general form as the empirical correlation, 
though, as before, differences do exist in the precise values of the coefficients and the power 
dependence of dv on bed height. Interestingly, while Werther's (1976) empirical correlation, 
[18], and [19] show approximately the same dependence on excess velocity, U -  Uml, for large 
values of this parameter; the derived semi-empirical expression predicts a zero bubble diameter 
at the minimum fluidization condition, while the empirical correlation yields a finite bubble 
diameter even for U less than U,, I. 

Comparison of [19] and [18] with the data obtained by Werther (1976) reveals, as can be 
seen in figure 8, that the theoretical relation offers acceptable though somewhat poorer 
agreement with the data than achieved with the correlation itself. Part of the disagreement of 
[19] with the data may be due to the simplifying approximations made in the derivation. 

In the previously referred to Darton et al. (1977) study, the coalescence of neighboring 
streams was assumed to be the primary mechanism for bubble growth in fluidized media and 
coalescence was postulated to occur after each bubble had risen a distance ADo in the medium, 
where ,~ is an empirical constant and Dc the diameter of the "catchment" area of each bubble 
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Figure 8. Comparison of bubble diameter predictions with data of Werther (1976). 
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and related to the distance separating adjacent bubbles. Based on this postulate, two phase 
theory and assumed bubble volume conservation, as well as ancillary assumptions, the bubble 
diameter was found to equal (Darton et al. 1977) 

do = 0.54( U - U,.t)°'4( h + 4X/ Ao)°S/ g °'2 [20] 

where Ao is the catchment area at the distributor. The coefficient shown resulted from setting 
,t = 1.17, obtained by examination of published measurements of bubble size, particularly 
Werther (1976) and Rowe & Everett (1972). While [20] offers general agreement with the data it 
overpredicts the dv values of Werther (1976) by as much as 30 per cent and those of Rowe & 
Everett (1972) by approx. 10 per cent (Darton et al. 1977). 

The basic Darton et al. (1977) postulate concerning the proportionality of bubble coales- 
cence height to initial distance of separation, provides in effect, an alternative bubble frequency 
formulation which can be used, in the manner described in the earlier sections of this paper, to 
derive a bubble diameter relation consistent with both two phase theory and gas flow continuity 
and free of the unproven assumption of bubble volume conservation. To aid in this process, it is 
convenient to note that the bubble fraction can be related to the number of bubbles contained 
in a cross-sectional slice of height kdo in the bed, according to 

[211 

In [21], N"  represents the number of bubbles per unit area, at a given height in the bed, 
while kdo equals the height of the bubble and its wake or cloud. Although k is not well defined, 
a value of 1.1 would be consistent with a fast bubble wake fraction of 1/3, as suggested by 
Rowe & Partridge (1965). 

The Darton et al. (1977) postulate on successive bubble coalescence at increments of ,~Dc 

can be used to relate the number of bubbles (per unit area) at height h in the bed to the number 
at height ho. Following Hughes (1978) 

N"(h)  = Ng[1 + (X/2 - 1)(h - ho)/ADco] -2 [22] 

where Dco is the catchment area at the distributor and equal to X/(4Ao/~') or X/(4/~rNg). 
Comparison of this relation with the data of Werther (1976) and Rowe & Everett (1972) shows a 
to vary from approx. 0.5 to 2.45 and to average 1.7 for the two studies cited (Hughes 1978). 

Combining [21] and [22], with k = 1.1 and a = 1.7, yields an expression for fast bubble 
fraction which can be equated with 8:b obtained from [8]. This latter operation eliminates 8 and 
yields 

do = [(3)(1.1)/2]°'5[U - Um:]°5[(~/2 - 1)(h - ho)/1.7 + Dco]/[0.71 l~/(gdv) + U - 2 Urn/] °'5 . [23] 

In the fast bubble regime, and especially for the range of large bubble sizes encountered by 
Werther (1976) and Rowe & Everett (1972), the denominator of [23] can be shown to approach 
(0.711x/(gd~)) °'5. With this approximation and some algebraic manipulation, [23] yields an 
explicit expression for bubble diameter 

do = 0.45(U - Um:)°4[h  + 4.63X/Ao)°'8/g °'z . [24] 

This expression is very similar to the Darton et al. (1977) relation and the lower coefficient 
(0.45 vs 0.54) in [24] can be expected to offer better agreement with Werther (1976) and Rowe & 
Everett (1972).data in the upper reaches of the respective beds than achieved by [20]. 
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CLOSURE 

The preceding development of a model for bubble growth in both large and small particle 
fluidized media has attempted to provide a rigorous basis for the correlation of data and 
prediction of bubble diameter in fluidized beds. The good to excellent agreement obtained in 
comparing the numerical solutions and semi-empirical correlations with the limited data 
available, appears to validate the use of gas flow continuity--as structured by two phase theory 
and coupled with some measure of bubble frequency--to achieve this goal. 

Unfortunately, however, the utility of the two-phase/continuity/frequency approach is 
limited by the absence of a theoretical bubble frequency relation and dearth of empirical values. 
More precise prediction of bubble diameter in gas fluidized beds must thus await the develop- 
ment of a detailed mechanistic model of bubble formation, coalescence and collapse which will 
yield a theoretical relation for bubble frequency. Alternately, since point frequency can be 
measured relatively easily, the foregoing methodology can be used in conjunction with 
measured point frequencies to predict bubble characteristics in large, industrial fluidized beds. 
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